login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sum of absolute values of coefficients of (1+x-x^2)^n.
6

%I #21 Apr 07 2023 17:08:20

%S 1,3,7,13,35,83,165,367,899,1957,3839,9771,22709,43213,102963,255061,

%T 525601,1098339,2798273,6202969,11746259,29976073,70898649,140495779,

%U 314391789,787757461,1688887719,3337986541,8583687613,19647782463

%N a(n) = sum of absolute values of coefficients of (1+x-x^2)^n.

%C Limit_{n -> oo} a(n+1)/a(n) does not exist; however, lim_{n -> oo} a(n)^(1/n) = sqrt(5) (conjecture).

%H Paul D. Hanna, <a href="/A084611/b084611.txt">Table of n, a(n) for n = 0..500</a>

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Asymptotic of sequence A084611</a>, Jul 26 2013.

%t Table[Sum[Abs[Coefficient[Expand[(1+x-x^2)^n],x,k]],{k,0,2*n}],{n,0,30}] (* _Vaclav Kotesovec_, Jul 28 2013 *)

%o (PARI) {a(n)=sum(k=0,2*n,abs(polcoeff((1+x-x^2+x*O(x^k))^n,k)))}

%o for(n=0,30,print1(a(n),", "))

%o (Magma)

%o A084610:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-1)^j: j in [0..k]]) >;

%o [(&+[Abs(A084610(n,k)): k in [0..2*n]]): n in [0..50]]; // _G. C. Greubel_, Mar 26 2023

%o (SageMath)

%o def A084610(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*(-1)^j for j in range(k//2+1))

%o def A084611(n): return 2*sum(abs(A084610(n,k)) for k in range(n)) + abs(A084610(n,n))

%o [A084611(n) for n in range(50)] # _G. C. Greubel_, Mar 26 2023

%Y Cf. A002426, A084600 - A084610, A084612 - A084615.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 01 2003