login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082873
Independence number of king KG_2 on triangle board B_n.
2
1, 1, 3, 6, 8, 12, 15, 19, 25, 30, 36, 42, 49, 55, 63, 72, 80, 90, 99, 109, 121, 132, 144, 156, 169, 181, 195, 210, 224, 240, 255, 271, 289, 306, 324, 342, 361, 379, 399, 420, 440, 462, 483, 505, 529, 552, 576, 600, 625, 649, 675, 702, 728
OFFSET
1,3
LINKS
J.-J. Bode, H. Harborth and M. Harborth, King independence on triangle boards, Discr. Math., 266 (2003), 101-107.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1).
FORMULA
a(n) = floor((n+1)^2/4) if n == 0, 1, 4, 6, 9, 10, 11 (mod 12), a(n) = floor((n+1)^2/4) - 1 otherwise.
a(n) = +2*a(n-1) -a(n-2) +a(n-12) -2*a(n-13) +a(n-14). - R. J. Mathar, Aug 05 2014
G.f.: -x*(1-x+2*x^2-x^4+2*x^5-x^6+x^7+2*x^8-x^9+x^10+x^3) / ( (1+x) *(1+x^2) *(x^4-x^2+1) *(x^2-x+1) *(1+x+x^2) *(x-1)^3 ). - R. J. Mathar, Aug 05 2014
MATHEMATICA
CoefficientList[Series[-(1 - x + 2 x^2 - x^4 + 2 x^5 - x^6 + x^7 + 2 x^8 - x^9 + x^10 + x^3)/((1 + x) (1 + x^2) (x^4 - x^2 + 1) (x^2 - x + 1) (1 + x + x^2) (x - 1)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 06 2014 *)
PROG
(Magma) I:=[1, 1, 3, 6, 8, 12, 15, 19, 25, 30, 36, 42, 49, 55]; [n le 14 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-12)-2*Self(n-13)+Self(n-14): n in [1..60]]; // Vincenzo Librandi, Aug 06 2014
CROSSREFS
Cf. A082874.
Sequence in context: A338722 A185549 A185597 * A182727 A220001 A310138
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, May 25 2003
EXTENSIONS
More terms from Sean A. Irvine, Sep 26 2011
STATUS
approved