login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082872
a^n + b^n + c^n + ..., where a*b*c* ... is the prime factorization of n.
4
1, 4, 27, 32, 3125, 793, 823543, 768, 39366, 9766649, 285311670611, 539633, 302875106592253, 678223089233, 30531927032, 262144, 827240261886336764177, 775103122, 1978419655660313589123979, 95367433737777, 558545874543637210
OFFSET
1,2
COMMENTS
n*log_10(2) + log_10(log_2(n)) <= length(a(n)) <= n*log_10(n). - Martin Renner, Jan 18 2012
If m = p^k is a power of a prime then a(n) = sum(p^m,i=1..k) = k*p^m is composite. - Martin Renner, Jan 31 2013
EXAMPLE
a(6) = a(2*3) = 2^6 + 3^6 = 793.
a(8) = a(2*2*2) = 2^8 + 2^8 + 2^8 = 768.
MAPLE
A082872 := proc(n)
local ps;
if n= 1 then
1;
else
ps := ifactors(n)[2] ;
add( op(2, p)*op(1, p)^n, p=ps) ;
end if;
end proc: # R. J. Mathar, Mar 12 2014
MATHEMATICA
Table[f = FactorInteger[n]; Total[Flatten[Table[Table[f[[i, 1]], {f[[i, 2]]}], {i, Length[f]}]]^n], {n, 25}] (* T. D. Noe, Feb 01 2013 *)
Table[Total[Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[n]]^n], {n, 30}] (* Harvey P. Dale, Jun 10 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jason Earls, May 25 2003
STATUS
approved