The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082874 Independence number of king KG_4 on triangle board B_n. 2
 1, 3, 5, 9, 14, 18, 26, 34, 41, 52, 64, 72, 87, 102, 113, 131, 150, 162, 184, 206, 221, 246, 272, 288, 317, 346, 365, 397, 430, 450, 486, 522, 545, 584, 624, 648, 691, 734, 761, 807, 854, 882, 932, 982, 1013, 1066, 1120, 1152, 1209, 1266 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS J.-J. Bode, H. Harborth and M. Harborth, King independence on triangle boards, Discr. Math., 266 (2003), 101-107. Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,1,-1,0,-1,1). FORMULA a(n)= a(n-1) +a(n-3) -a(n-4) +a(n-6) -a(n-7) -a(n-9) +a(n-10), n>12. G.f.: x*(x^11 -x^10 -x^8 -x^7 -3*x^6 -2*x^5 -3*x^4 -3*x^3 -2*x^2 -2*x -1) / ((x -1)^3*(x +1)*(x^2 -x +1)*(x^2 +x +1)^2). - Colin Barker, Aug 06 2014 MAPLE A082874 := proc(n)     if n = 1 then         1;     elif n = 2 then         3;     else         m := modp(n, 6) ;         3*n^2+op(m+1, [0, n+2, 2*n-4, 3, n+2, 2*n-1]) ;         %/6 ;     end if ; end proc: seq(A082874(n), n=1..50) ; # R. J. Mathar, Aug 05 2014 PROG (MAGMA) I:=[1, 3, 5, 9, 14, 18, 26, 34, 41, 52, 64, 72]; [n le 12 select I[n] else Self(n-1)+Self(n-3)-Self(n-4)+Self(n-6)-Self(n-7)-Self(n-9)+Self(n-10): n in [1..60]]; // Vincenzo Librandi, Aug 06 2014 (PARI) Vec(x*(x^11-x^10-x^8-x^7-3*x^6-2*x^5-3*x^4-3*x^3-2*x^2-2*x-1)/((x-1)^3*(x+1)*(x^2-x+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Aug 06 2014 CROSSREFS Cf. A082873. Sequence in context: A211389 A335193 A288259 * A266250 A127720 A118002 Adjacent sequences:  A082871 A082872 A082873 * A082875 A082876 A082877 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 25 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 13:39 EDT 2021. Contains 346359 sequences. (Running on oeis4.)