login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082806
Palindromes which are prime and the sum of the digits is also prime.
6
2, 3, 5, 7, 11, 101, 131, 151, 191, 313, 353, 373, 757, 797, 919, 10301, 10501, 11311, 12721, 13331, 13931, 14341, 14741, 15551, 16361, 16561, 18181, 19391, 19991, 30103, 30703, 31513, 32323, 33533, 34543, 35153, 35353, 35753, 36563, 38183
OFFSET
1,1
COMMENTS
Most of the initial palindromic primes are members.
11 is the only member of even length since the sum of the digits of such palindromes is even and 2 is the only even prime. For the members of odd length the middle digit is odd (except for 2). - Chai Wah Wu, Aug 12 2014
EXAMPLE
E.g. 12721 is a palindromic prime and 1+2+7+2+1 = 13 is also prime.
MAPLE
N:= 3: # to get all terms of at most 2*N+1 digits
revdigs:= proc(n)
local L, d;
L:= convert(n, base, 10);
d:= nops(L);
add(L[i]*10^(d-i), i=1..d);
end proc:
pals:= proc(d)
local x, y;
seq(seq(x*10^(d+1)+y*10^d + revdigs(x), y=0..9), x=10^(d-1)..10^d-1)
end proc;
select(n -> isprime(n) and isprime(convert(convert(n, base, 10), `+`)), {2, 3, 5, 7, 11, seq(pals(d), d=1..3)}); # Robert Israel, Aug 12 2014
MATHEMATICA
Select[ Range[390000], PrimeQ[ # ] && FromDigits[ Reverse[ IntegerDigits[ # ]]] == # && PrimeQ[ Plus @@ IntegerDigits[ # ]] & ] (* Robert G. Wilson v, Jun 17 2003 *)
PROG
(Python)
from sympy import isprime
A082806 = sorted([n for n in chain(map(lambda x:int(str(x)+str(x)[::-1]), range(1, 10**5)), map(lambda x:int(str(x)+str(x)[-2::-1]), range(1, 10**5))) if isprime(n) and isprime(sum([int(d) for d in str(n)]))])
# Chai Wah Wu, Aug 12 2014
CROSSREFS
Cf. A002385.
Subsequence of A083393. [Arkadiusz Wesolowski, Sep 14 2011]
Sequence in context: A083139 A088562 A083712 * A157868 A222116 A229107
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 20 2003
EXTENSIONS
Corrected and extended by Giovanni Resta, Feb 07 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
STATUS
approved