OFFSET
1,1
COMMENTS
Most of the initial palindromic primes are members.
11 is the only member of even length since the sum of the digits of such palindromes is even and 2 is the only even prime. For the members of odd length the middle digit is odd (except for 2). - Chai Wah Wu, Aug 12 2014
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
EXAMPLE
E.g. 12721 is a palindromic prime and 1+2+7+2+1 = 13 is also prime.
MAPLE
N:= 3: # to get all terms of at most 2*N+1 digits
revdigs:= proc(n)
local L, d;
L:= convert(n, base, 10);
d:= nops(L);
add(L[i]*10^(d-i), i=1..d);
end proc:
pals:= proc(d)
local x, y;
seq(seq(x*10^(d+1)+y*10^d + revdigs(x), y=0..9), x=10^(d-1)..10^d-1)
end proc;
select(n -> isprime(n) and isprime(convert(convert(n, base, 10), `+`)), {2, 3, 5, 7, 11, seq(pals(d), d=1..3)}); # Robert Israel, Aug 12 2014
MATHEMATICA
Select[ Range[390000], PrimeQ[ # ] && FromDigits[ Reverse[ IntegerDigits[ # ]]] == # && PrimeQ[ Plus @@ IntegerDigits[ # ]] & ] (* Robert G. Wilson v, Jun 17 2003 *)
PROG
(Python)
from sympy import isprime
A082806 = sorted([n for n in chain(map(lambda x:int(str(x)+str(x)[::-1]), range(1, 10**5)), map(lambda x:int(str(x)+str(x)[-2::-1]), range(1, 10**5))) if isprime(n) and isprime(sum([int(d) for d in str(n)]))])
# Chai Wah Wu, Aug 12 2014
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 20 2003
EXTENSIONS
Corrected and extended by Giovanni Resta, Feb 07 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
STATUS
approved