login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082804
Smallest multiple of 9 beginning with n.
7
18, 27, 36, 45, 54, 63, 72, 81, 9, 108, 117, 126, 135, 144, 153, 162, 171, 18, 198, 207, 216, 225, 234, 243, 252, 261, 27, 288, 297, 306, 315, 324, 333, 342, 351, 36, 378, 387, 396, 405, 414, 423, 432, 441, 45, 468, 477, 486, 495, 504, 513, 522, 531, 54, 558, 567
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1).
FORMULA
From Colin Barker, Mar 23 2017: (Start)
G.f.: 9*x*(2 + 3*x + 4*x^2 + 5*x^3 + 6*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + x^8 + 8*x^9 + 7*x^10 + 6*x^11 + 5*x^12 + 4*x^13 + 3*x^14 + 2*x^15 + x^16) / ((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n>17.
(End)
MATHEMATICA
Table[If[Mod[n, 9]==0, n, 10n+9-Mod[n, 9]], {n, 56}] (* Ray Chandler, Feb 09 2014 *)
PROG
(PARI) Vec(9*x*(2 + 3*x + 4*x^2 + 5*x^3 + 6*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + x^8 + 8*x^9 + 7*x^10 + 6*x^11 + 5*x^12 + 4*x^13 + 3*x^14 + 2*x^15 + x^16) / ((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2) + O(x^60)) \\ Colin Barker, Mar 23 2017
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Apr 20 2003
EXTENSIONS
Extended by Ray Chandler, Feb 09 2014
STATUS
approved