|
|
A082802
|
|
Smallest multiple of 7 beginning with n.
|
|
6
|
|
|
14, 21, 35, 42, 56, 63, 7, 84, 91, 105, 112, 126, 133, 14, 154, 161, 175, 182, 196, 203, 21, 224, 231, 245, 252, 266, 273, 28, 294, 301, 315, 322, 336, 343, 35, 364, 371, 385, 392, 406, 413, 42, 434, 441, 455, 462, 476, 483, 49, 504, 511, 525, 532, 546, 553, 56
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).
|
|
FORMULA
|
From Colin Barker, Mar 23 2017: (Start)
G.f.: 7*x*(2 + 3*x + 5*x^2 + 6*x^3 + 8*x^4 + 9*x^5 + x^6 + 8*x^7 + 7*x^8 + 5*x^9 + 4*x^10 + 2*x^11 + x^12) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^2).
a(n) = 2*a(n-7) - a(n-14) for n>14.
(End)
|
|
MATHEMATICA
|
Table[If[Mod[n, 7]==0, n, If[Mod[10 n, 7]==0, 10 n, 10 n + 7 - Mod[10 n, 7]]], {n, 56}] (* Ray Chandler, Feb 09 2014 *)
|
|
PROG
|
(PARI) Vec(7*x*(2 + 3*x + 5*x^2 + 6*x^3 + 8*x^4 + 9*x^5 + x^6 + 8*x^7 + 7*x^8 + 5*x^9 + 4*x^10 + 2*x^11 + x^12) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^2) + O(x^60)) \\ Colin Barker, Mar 23 2017
|
|
CROSSREFS
|
Cf. A082799, A082800, A082801, A082803, A082804.
Sequence in context: A084995 A100466 A100467 * A258217 A272470 A094393
Adjacent sequences: A082799 A082800 A082801 * A082803 A082804 A082805
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Amarnath Murthy, Apr 20 2003
|
|
EXTENSIONS
|
Corrected a(3)=35 and extended by Ray Chandler, Feb 09 2014
Typo in Mathematica program fixed by Vincenzo Librandi, Feb 10 2014
|
|
STATUS
|
approved
|
|
|
|