|
|
A082425
|
|
a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) - 1.
|
|
2
|
|
|
1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
For n >= 2, a(n) = floor(n*(3-e)*n!).
In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... . For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!). For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k + 1)!*binomial(n,k). Lim_{n -> infinity} a(n)/(n*n!) = 3 - e. E.g.f.: 3*(1+t)/(1-t)^3 - exp(t)*(3-t)/(1-t)^3. a(n) = A083746(n+2) - A001339(n).
Recurrence relation: a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >=4. Recurrence relation: a(2) = 1, a(n) = (n^2*a(n-1)+1)/(n-1) for n >= 2. The recurrence relation x(n) = (n^2*x(n-1)-1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End)
|
|
MAPLE
|
a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|