The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082425 a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) - 1. 2
 1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..19. FORMULA For n >= 2, a(n) = floor(n*(3-e)*n!). a(n) = n*A056543(n) - 1, n > 1. - Vladeta Jovovic, Apr 26 2003 From Peter Bala, Jul 09 2008: (Start) In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... . For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!). For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k + 1)!*binomial(n,k). Lim_{n -> infinity} a(n)/(n*n!) = 3 - e. E.g.f.: 3*(1+t)/(1-t)^3 - exp(t)*(3-t)/(1-t)^3. a(n) = A083746(n+2) - A001339(n). Recurrence relation: a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >=4. Recurrence relation: a(2) = 1, a(n) = (n^2*a(n-1)+1)/(n-1) for n >= 2. The recurrence relation x(n) = (n^2*x(n-1)-1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End) MAPLE a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008 CROSSREFS Cf. A074143. Cf. A001339, A083746. Sequence in context: A138772 A258789 A367259 * A202248 A225344 A109963 Adjacent sequences: A082422 A082423 A082424 * A082426 A082427 A082428 KEYWORD nonn AUTHOR Benoit Cloitre, Apr 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 21:14 EST 2023. Contains 367462 sequences. (Running on oeis4.)