login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081678
a(n) = (4*6^n - 3*5^n - 3^n)/6.
1
0, 1, 10, 77, 538, 3581, 23170, 147197, 923338, 5738621, 35418130, 217421117, 1329029338, 8096512061, 49190221090, 298195475837, 1804438818538, 10902948379901, 65799224576050, 396702889799357, 2389754663090938, 14386213437758141, 86555704435827010, 520526335200999677
OFFSET
0,3
COMMENTS
Binomial transform of A081675.
FORMULA
G.f.: x*(1-4*x)/((1-3*x)*(1-5*x)*(1-6*x)).
a(n) = 14*a(n-1) - 63*a(n-2) + 90*a(n-3); a(0)=0, a(1)=1, a(2)=10. - Harvey P. Dale, Jul 25 2011
E.g.f.: exp(3*x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6. - Elmo R. Oliveira, Sep 12 2024
MATHEMATICA
Table[(4*6^n-3*5^n-3^n)/6, {n, 0, 20}] (* or *) LinearRecurrence[ {14, -63, 90}, {0, 1, 10}, 20] (* Harvey P. Dale, Jul 25 2011 *)
PROG
(Magma) [(4*6^n-3*5^n-3^n)/6: n in [0..30]]; // Vincenzo Librandi, Jul 26 2011
(PARI) a(n)=(4*6^n-3*5^n-3^n)/6 \\ Charles R Greathouse IV, Jul 26 2011
CROSSREFS
Cf. A081675.
Sequence in context: A000808 A159579 A244720 * A081182 A127536 A016201
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 28 2003
STATUS
approved