login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (4*6^n - 3*5^n - 3^n)/6.
1

%I #27 Sep 13 2024 08:13:30

%S 0,1,10,77,538,3581,23170,147197,923338,5738621,35418130,217421117,

%T 1329029338,8096512061,49190221090,298195475837,1804438818538,

%U 10902948379901,65799224576050,396702889799357,2389754663090938,14386213437758141,86555704435827010,520526335200999677

%N a(n) = (4*6^n - 3*5^n - 3^n)/6.

%C Binomial transform of A081675.

%H Vincenzo Librandi, <a href="/A081678/b081678.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14,-63,90).

%F G.f.: x*(1-4*x)/((1-3*x)*(1-5*x)*(1-6*x)).

%F a(n) = 14*a(n-1) - 63*a(n-2) + 90*a(n-3); a(0)=0, a(1)=1, a(2)=10. - _Harvey P. Dale_, Jul 25 2011

%F E.g.f.: exp(3*x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6. - _Elmo R. Oliveira_, Sep 12 2024

%t Table[(4*6^n-3*5^n-3^n)/6,{n,0,20}] (* or *) LinearRecurrence[ {14,-63,90},{0,1,10},20] (* _Harvey P. Dale_, Jul 25 2011 *)

%o (Magma) [(4*6^n-3*5^n-3^n)/6: n in [0..30]]; // _Vincenzo Librandi_, Jul 26 2011

%o (PARI) a(n)=(4*6^n-3*5^n-3^n)/6 \\ _Charles R Greathouse IV_, Jul 26 2011

%Y Cf. A081675.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 28 2003