login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081680
a(n) = (7^n - 6^n - 5^n - 4^n + 4*3^n)/2.
3
1, 2, 4, 23, 274, 2927, 27094, 228923, 1827634, 14069687, 105715534, 781107923, 5702856394, 41273440847, 296753044774, 2122921300523, 15127554995554, 107462125890407, 761485887090814, 5385095865086723, 38019827430709114, 268063860039802367, 1887898846143949654, 13283513097950386523
OFFSET
0,2
COMMENTS
Binomial transform of A081679.
FORMULA
G.f.: -(1083*x^4-762*x^3+199*x^2-23*x+1)/((3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). [Colin Barker, Sep 07 2012]
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(3*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 4)/2.
a(n) = 25*a(n-1) - 245*a(n-2) + 1175*a(n-3) - 2754*a(n-4) + 2520*a(n-5) for n > 4. (End)
MATHEMATICA
LinearRecurrence[{25, -245, 1175, -2754, 2520}, {1, 2, 4, 23, 274}, 30] (* Harvey P. Dale, Feb 19 2018 *)
CROSSREFS
Sequence in context: A009313 A009317 A209024 * A269573 A147761 A214299
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(21)-a(23) from Elmo R. Oliveira, Sep 13 2024
STATUS
approved