login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080973
A014486-encoding of the "Moose trees".
10
2, 52, 14952, 4007632, 268874213792, 68836555442592, 4561331969745081152, 300550070677246403229312, 1294530259719904904564091957759232, 331402554328705507772604330809117952
OFFSET
0,1
COMMENTS
Meeussen's observation about the orbits of a composition of two involutions F and R states that if the orbit size of the composition (acting on a particular element of the set) is odd, then it contains an element fixed by the other involution if and only if it contains also an element fixed by the other, on the (almost) opposite side of the cycle. Here those two involutions are A057163 and A057164, their composition is Donaghey's "Map M" A057505 and as the trees A080293/A080295 are symmetric as binary trees and the cycle sizes A080292 are odd, it follows that these are symmetric as general trees.
FORMULA
a(n) = A014486(A080975(n)) = A014486(A057505^((A080292(n)+1)/2) (A080293(n))) [where ^ stands for the repeated applications of permutation A057505.]
CROSSREFS
Same sequence in binary: A080974. A036044(a(n)) = a(n) for all n. The number of edges (as general trees): A080978.
Sequence in context: A121293 A246743 A057106 * A230882 A369089 A216354
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved