login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121293
a(n) = Bell(3*n+2).
2
2, 52, 4140, 678570, 190899322, 82864869804, 51724158235372, 44152005855084346, 49631246523618756274, 71339801938860275191172, 128064670049908713818925644, 281600203019560266563340426570, 746289892095625330523099540639146
OFFSET
0,1
COMMENTS
Even Bell numbers. A000110 except A134715. - Vladimir Reshetnikov, Nov 02 2015
LINKS
FORMULA
E.g.f.: exp(-1)*Sum_{n>=0}(n^2*exp(n^3*x)/n!).
MAPLE
seq(combinat:-bell(3*k+2), k=0..20); # Robert Israel, Nov 02 2015
MATHEMATICA
Table[ BellB[3*n + 2], {n, 0, 10}] (* Jean-François Alcover, Dec 13 2012 *)
PROG
(PARI) a000110(n) = n!*polcoeff(exp(exp(x+x*O(x^n))-1), n);
vector(20, n, n--; a000110(3*n+2)) \\ Altug Alkan, Nov 02 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 24 2006
STATUS
approved