login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Bell(3*n+2).
2

%I #18 Nov 05 2015 02:41:28

%S 2,52,4140,678570,190899322,82864869804,51724158235372,

%T 44152005855084346,49631246523618756274,71339801938860275191172,

%U 128064670049908713818925644,281600203019560266563340426570,746289892095625330523099540639146

%N a(n) = Bell(3*n+2).

%C Even Bell numbers. A000110 except A134715. - _Vladimir Reshetnikov_, Nov 02 2015

%H Robert Israel, <a href="/A121293/b121293.txt">Table of n, a(n) for n = 0..190</a>

%F E.g.f.: exp(-1)*Sum_{n>=0}(n^2*exp(n^3*x)/n!).

%p seq(combinat:-bell(3*k+2), k=0..20); # _Robert Israel_, Nov 02 2015

%t Table[ BellB[3*n + 2], {n, 0, 10}] (* _Jean-François Alcover_, Dec 13 2012 *)

%o (PARI) a000110(n) = n!*polcoeff(exp(exp(x+x*O(x^n))-1), n);

%o vector(20, n, n--; a000110(3*n+2)) \\ _Altug Alkan_, Nov 02 2015

%Y Cf. A000110, A070906, A134715.

%K easy,nonn

%O 0,1

%A _Vladeta Jovovic_, Aug 24 2006