OFFSET
1,3
COMMENTS
Also a triangle collected from the Catalan generating tree, with row n containing A000108(n) terms and ending with n. Rows converge towards A007001, the "last" row. - Antti Karttunen, Jun 17 2003
LINKS
Reinhard Zumkeller, Rows n = 1..10 of triangle, flattened
C. Banderier, A. Denise, P. Flajolet, M. Bousquet-Mélou et al., Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
Antti Karttunen, Notes concerning A080237-tree and related sequences.
R. P. Stanley, Catalan addendum. See the interpretation (www, "Vertices of height n-1 of the tree T ...").
FORMULA
EXAMPLE
As an irregular triangle:
1;
1,2;
1,2,1,2,3;
1,2,1,2,3,1,2,1,2,3,1,2,3,4;
...
Sequence begins: 1,(1,2),(1,2),(1,2,3), ... where runs are between 2 parentheses. 5th run is (1,2) since a(4)=1 and sequence continues: 1,1,2,1,2,1,2,3,1,2....
G.f. = x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + 2*x^7 + 3*x^8 + x^9 + 2*x^10 + ...
MATHEMATICA
run[1] = {1}; run[k_] := run[k] = Range[ Flatten[ Table[run[j], {j, 1, k-1}]][[k-1]] + 1]; Table[run[k], {k, 1, 29}] // Flatten (* Jean-François Alcover, Sep 12 2012 *)
NestList[ Flatten[# /. # -> Range[# + 1]] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jun 24 2014 *)
PROG
(PARI) {a(n) = my(v, i, j, k); if( n<1, 0, v=vector(n); for(m=1, n, v[m]=k++; if( k>j, j=v[i++]; k=0)); v[n])}; /* Michael Somos, Jun 24 2014 */
(Haskell)
a080237 n k = a080237_tabf !! (n-1) !! (k-1)
a080237_row n = a080237_tabf !! (n-1)
a080237_tabf = [1] : f a080237_tabf where
f [[]] =[]
f (xs:xss) = concatMap (enumFromTo 1 . (+ 1)) xs : f xss
a080237_list = concat a080237_tabf
-- Reinhard Zumkeller, Jun 01 2015
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Benoit Cloitre, Mar 18 2003
STATUS
approved