login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080237
Start with 1 and apply the process: k-th run is 1, 2, 3, ..., a(k-1)+1.
12
1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2
OFFSET
1,3
COMMENTS
Also a triangle collected from the Catalan generating tree, with row n containing A000108(n) terms and ending with n. Rows converge towards A007001, the "last" row. - Antti Karttunen, Jun 17 2003
LINKS
C. Banderier, A. Denise, P. Flajolet, M. Bousquet-Mélou et al., Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
R. P. Stanley, Catalan addendum. See the interpretation (www, "Vertices of height n-1 of the tree T ...").
FORMULA
It seems that Sum_{k=1..n} a(k) = C*n*log(log(n)) + O(n*log(log(n))) with C = 0.6....
a(n) = A007814(A014486(n)) (i.e., number of trailing zeros in A063171(n)).
EXAMPLE
As an irregular triangle:
1;
1,2;
1,2,1,2,3;
1,2,1,2,3,1,2,1,2,3,1,2,3,4;
...
Sequence begins: 1,(1,2),(1,2),(1,2,3), ... where runs are between 2 parentheses. 5th run is (1,2) since a(4)=1 and sequence continues: 1,1,2,1,2,1,2,3,1,2....
G.f. = x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + 2*x^7 + 3*x^8 + x^9 + 2*x^10 + ...
MATHEMATICA
run[1] = {1}; run[k_] := run[k] = Range[ Flatten[ Table[run[j], {j, 1, k-1}]][[k-1]] + 1]; Table[run[k], {k, 1, 29}] // Flatten (* Jean-François Alcover, Sep 12 2012 *)
NestList[ Flatten[# /. # -> Range[# + 1]] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jun 24 2014 *)
PROG
(PARI) {a(n) = my(v, i, j, k); if( n<1, 0, v=vector(n); for(m=1, n, v[m]=k++; if( k>j, j=v[i++]; k=0)); v[n])}; /* Michael Somos, Jun 24 2014 */
(Haskell)
a080237 n k = a080237_tabf !! (n-1) !! (k-1)
a080237_row n = a080237_tabf !! (n-1)
a080237_tabf = [1] : f a080237_tabf where
f [[]] =[]
f (xs:xss) = concatMap (enumFromTo 1 . (+ 1)) xs : f xss
a080237_list = concat a080237_tabf
-- Reinhard Zumkeller, Jun 01 2015
CROSSREFS
Cf. A000002, A007001. Positions of ones: A085223. The first occurrence of each n is at A014138(n). See A085178.
Sequence in context: A133780 A270808 A290532 * A136109 A105265 A351468
KEYWORD
nonn,tabf
AUTHOR
Benoit Cloitre, Mar 18 2003
STATUS
approved