OFFSET
1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
FORMULA
a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
From G. C. Greubel, Dec 12 2023: (Start)
a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)
EXAMPLE
a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
MATHEMATICA
LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 1, 5, 3, 8, 8, 16, 12, 21}, 70] (* G. C. Greubel, Dec 12 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // G. C. Greubel, Dec 12 2023
(SageMath)
def A079810_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
a=A079810_list(71); a[1:] # G. C. Greubel, Dec 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Feb 10 2003
EXTENSIONS
Edited by David Wasserman, May 11 2004
STATUS
approved