login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079810
Sums of diagonals (upward from left to right) of the triangle shown in A079809.
2
1, 1, 5, 3, 8, 8, 16, 12, 21, 21, 33, 27, 40, 40, 56, 48, 65, 65, 85, 75, 96, 96, 120, 108, 133, 133, 161, 147, 176, 176, 208, 192, 225, 225, 261, 243, 280, 280, 320, 300, 341, 341, 385, 363, 408, 408, 456, 432, 481, 481, 533, 507, 560, 560, 616, 588, 645, 645
OFFSET
1,3
FORMULA
a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
From G. C. Greubel, Dec 12 2023: (Start)
a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)
EXAMPLE
a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
MATHEMATICA
LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 1, 5, 3, 8, 8, 16, 12, 21}, 70] (* G. C. Greubel, Dec 12 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // G. C. Greubel, Dec 12 2023
(SageMath)
def A079810_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
a=A079810_list(71); a[1:] # G. C. Greubel, Dec 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Feb 10 2003
EXTENSIONS
Edited by David Wasserman, May 11 2004
STATUS
approved