login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079796
Primes p such that (3*p)^2 + p^2 + 3^2 and (3*p)^2 - p^2 - 3^2 are both prime.
1
7, 29, 83, 181, 197, 337, 601, 631, 1303, 1847, 2029, 3023, 3109, 3359, 4591, 4649, 4831, 6397, 6791, 7489, 7559, 7573, 7951, 8609, 8933, 9857, 10151, 10457, 10501, 10709, 11467, 11633, 12011, 12377, 12641, 12739, 13469, 14197, 14449, 14519
OFFSET
1,1
COMMENTS
Also called nonomatic primes. There is probably an infinity of them. There seems to be no prime number with a similar property using 5 or a larger factor in the polynomials.
LINKS
Vincenzo Librandi and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Librandi)
EXAMPLE
a(2) = 29 since (3*29)^2 + 29^2 + 3^2 = 8419 and (3*29)^2 - 29^2 - 3^2 = 6719 are both primes.
MATHEMATICA
Select[Prime@Range[1, 2000], PrimeQ[9 #^2 + #^2 + 9] && PrimeQ[9 #^2 - #^2 - 9] &] (* Vincenzo Librandi, Oct 18 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(15000)| IsPrime( (3*p)^2 + p^2 + 3^2) and IsPrime((3*p)^2 - p^2 - 3^2)]; // Vincenzo Librandi, Oct 18 2012
(PARI) is(n)=isprime(10*n^2+9) && isprime(8*n^2-9) && isprime(n) \\ Charles R Greathouse IV, Jun 10 2015
CROSSREFS
Sequence in context: A141854 A267290 A375656 * A242727 A229795 A114043
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Feb 19 2003
STATUS
approved