login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267290
Primes of the form 11*k^2-11*k+7.
1
7, 29, 73, 139, 227, 337, 997, 1217, 1459, 1723, 2647, 2999, 3373, 3769, 5573, 6079, 6607, 15473, 17167, 18047, 21787, 22777, 23789, 28057, 29179, 30323, 31489, 36373, 37649, 41609, 45767, 48649, 50123, 56239, 61057, 67789, 71287, 74873, 84223, 88117, 108907, 113329, 117839, 124769, 127123, 129499
OFFSET
1,1
COMMENTS
Primes p == 7 (mod 11) such that (4*p-17)/11 is a square. - Robert Israel, Jan 14 2016
LINKS
EXAMPLE
k = 3: 11*(3^2) - 11*3 + 7 = 73 (is prime).
MAPLE
select(isprime, [seq(11*i^2-11*i+7, i=1..1000)]); # Robert Israel, Jan 14 2016
MATHEMATICA
Select[Array[11 #^2 - 11 # + 7 &, {112}], PrimeQ] (* Michael De Vlieger, Jan 12 2016 *)
Select[Table[11 n^2 - 11 n + 7, {n, 180}], PrimeQ] (* Vincenzo Librandi, Jan 15 2016 *)
PROG
(PARI) lista(nn) = for (k=1, nn, if (isprime(p=11*k^2-11*k+7), print1(p, ", "))); \\ Michel Marcus, Jan 14 2016
(Magma) [a: n in [1..100] | IsPrime(a) where a is 11*n^2-11*n+7]; // Vincenzo Librandi, Jan 15 2016
CROSSREFS
Cf. A141854.
Sequence in context: A176616 A231988 A141854 * A375656 A079796 A242727
KEYWORD
nonn,easy
AUTHOR
Emre APARI, Jan 12 2016
EXTENSIONS
More terms from Michael De Vlieger, Jan 12 2016
STATUS
approved