OFFSET
1,1
COMMENTS
Primes p == 7 (mod 11) such that (4*p-17)/11 is a square. - Robert Israel, Jan 14 2016
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
k = 3: 11*(3^2) - 11*3 + 7 = 73 (is prime).
MAPLE
select(isprime, [seq(11*i^2-11*i+7, i=1..1000)]); # Robert Israel, Jan 14 2016
MATHEMATICA
Select[Array[11 #^2 - 11 # + 7 &, {112}], PrimeQ] (* Michael De Vlieger, Jan 12 2016 *)
Select[Table[11 n^2 - 11 n + 7, {n, 180}], PrimeQ] (* Vincenzo Librandi, Jan 15 2016 *)
PROG
(PARI) lista(nn) = for (k=1, nn, if (isprime(p=11*k^2-11*k+7), print1(p, ", "))); \\ Michel Marcus, Jan 14 2016
(Magma) [a: n in [1..100] | IsPrime(a) where a is 11*n^2-11*n+7]; // Vincenzo Librandi, Jan 15 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emre APARI, Jan 12 2016
EXTENSIONS
More terms from Michael De Vlieger, Jan 12 2016
STATUS
approved