login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267289
Primes p such that (2^k)+p+(2^(k+1)) is also prime, where 2^k is the largest power of 2 smaller than p.
1
5, 7, 13, 19, 23, 31, 41, 43, 53, 61, 71, 79, 89, 101, 137, 139, 157, 163, 173, 179, 193, 223, 229, 233, 263, 271, 281, 283, 293, 349, 383, 419, 433, 449, 461, 463, 491, 509, 547, 563, 577, 593, 601, 607, 617, 643, 677, 701, 733, 751, 757, 761, 773, 797, 811, 821, 853, 857, 863, 881, 887, 911, 937, 941, 967
OFFSET
1,1
COMMENTS
Primes p such that p + 3*A053644(p) is also prime. - Robert Israel, Jan 13 2016
LINKS
EXAMPLE
p = 5: 4 + 5 + 8 = 17 (is prime).
p = 7: 4 + 7 + 8 = 19 (is prime).
p = 31: 16 + 31 + 32 = 79 (is prime).
p = 43: 32 + 43 + 64 = 139 (is prime).
p = 71: 64 + 71 + 128 = 263 (is prime).
p = 89: 64 + 89 + 128 = 281 (is prime).
MAPLE
select(t -> isprime(t) and isprime(t + 3*2^ilog2(t)), [seq(i, i=3..10^4, 2)]); # Robert Israel, Jan 13 2016
MATHEMATICA
Select[Prime@ Range@ 165, Function[k, PrimeQ[(2^k) + # + (2^(k + 1))]]@ Floor@ Log2@ # &] (* Michael De Vlieger, Jan 12 2016 *)
lp2Q[p_]:=Module[{k=Floor[Log[2, p]]}, PrimeQ[2^k+p+2^(k+1)]]; Select[ Prime[ Range[200]], lp2Q] (* Harvey P. Dale, Nov 02 2021 *)
CROSSREFS
Sequence in context: A114275 A350429 A156107 * A084932 A038908 A314326
KEYWORD
nonn
AUTHOR
Emre APARI, Jan 12 2016
STATUS
approved