login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078052
Expansion of (1-x)/(1+x+2*x^2+2*x^3).
1
1, -2, 0, 2, 2, -6, -2, 10, 6, -22, -10, 42, 22, -86, -42, 170, 86, -342, -170, 682, 342, -1366, -682, 2730, 1366, -5462, -2730, 10922, 5462, -21846, -10922, 43690, 21846, -87382, -43690, 174762, 87382, -349526, -174762, 699050, 349526, -1398102, -699050, 2796202, 1398102, -5592406, -2796202
OFFSET
0,2
COMMENTS
First differences of A077980.
FORMULA
a(n) = (1/3) * ((-3+5*(-1)^n)/2 * (-2)^floor(n/2) + 2*(-1)^n ). - Ralf Stephan, Aug 17 2013
a(0)=1, a(1)=-2, a(2)=0, a(n)=-a(n-1)-2*a(n-2)-2*a(n-3). - Harvey P. Dale, Mar 26 2015
MATHEMATICA
CoefficientList[Series[(1 - x) / (1 + x + 2 x^2 + 2 x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 17 2013 *)
LinearRecurrence[{-1, -2, -2}, {1, -2, 0}, 50] (* Harvey P. Dale, Mar 26 2015 *)
PROG
(PARI) a(n)=1/3*((-3+5*(-1)^n)/2*(-2)^floor(n/2)+2*(-1)^n); \\ Ralf Stephan, Aug 17 2013
(Magma) I:=[1, -2, 0]; [n le 3 select I[n] else -Self(n-1)-2*Self(n-2) -2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 17 2013
CROSSREFS
Sequence in context: A071055 A183034 A354101 * A056458 A322509 A284570
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved