login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284570
a(n) = A000005((n+1)^2) - A000005(n^2).
2
2, 0, 2, -2, 6, -6, 4, -2, 4, -6, 12, -12, 6, 0, 0, -6, 12, -12, 12, -6, 0, -6, 18, -16, 4, -2, 8, -12, 24, -24, 8, -2, 0, 0, 16, -22, 6, 0, 12, -18, 24, -24, 12, 0, -6, -6, 24, -22, 10, -6, 6, -12, 18, -12, 12, -12, 0, -6, 42, -42, 6, 6, -2, -4, 18, -24, 12, -6, 18, -24, 32, -32, 6, 6, 0, -6, 18, -24, 24, -18, 0, -6, 42, -36, 0, 0, 12, -18, 42, -36, 6, -6
OFFSET
1,1
LINKS
FORMULA
a(n) = A000005((n+1)^2) - A000005(n^2).
a(n) = A048691(n+1) - A048691(n). - Michel Marcus, Apr 15 2017
MATHEMATICA
Table[DivisorSigma[0, (n + 1)^2] - DivisorSigma[0, n^2], {n, 100}] (* Indranil Ghosh, Apr 15 2017 *)
Differences[DivisorSigma[0, Range[100]^2]] (* Harvey P. Dale, Jul 21 2023 *)
PROG
(PARI) A284570(n) = numdiv((n+1)^2)-numdiv(n^2);
(Scheme) (define (A284570 n) (- (A000005 (A000290 (+ 1 n))) (A000005 (* n n))))
(Python)
from sympy import divisor_count as D
print([D((n + 1)**2) - D(n**2) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017
CROSSREFS
Cf. A000005, A000290, A048691, A276553 (positions of zeros).
Sequence in context: A078052 A056458 A322509 * A256847 A372023 A046277
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 15 2017
STATUS
approved