The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183034 G.f.: A(x) = exp( Sum_{n>=1} -(-2)^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n. 1
 1, 2, 0, -2, 2, 6, 0, -6, 0, 6, 0, -6, -2, 2, 0, -2, 2, 6, 0, -6, 6, 18, 0, -18, 0, 18, 0, -18, -6, 6, 0, -6, 0, 6, 0, -6, 6, 18, 0, -18, 0, 18, 0, -18, -6, 6, 0, -6, -2, 2, 0, -2, 2, 6, 0, -6, 0, 6, 0, -6, -2, 2, 0, -2, 2, 6, 0, -6, 6, 18, 0, -18, 0, 18, 0, -18, -6, 6, 0, -6, 6, 18, 0, -18, 18, 54, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare g.f. to B(x), the g.f. of the number of partitions of 2n into powers of 2 (A000123): B(x) = exp( Sum_{n>=1} 2^A001511(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(2^n)). LINKS Table of n, a(n) for n=0..86. FORMULA G.f. satisfies: A(x) = A(x^4)*(1+x)^2/(1+x^2). G.f.: A(x) = 1 + 2*Sum_{n>=0} G(x^(4^n)) where G(x) = x*(1-x^2)*Product_{n>=1} (1 + x^(4^n))^3 is the g.f. of A183035. a(4n) = a(n); a(4n+2) = 0. EXAMPLE G.f.: A(x) = 1 + 2*x - 2*x^3 + 2*x^4 + 6*x^5 - 6*x^7 + 6*x^9 -+... The logarithm of the g.f. begins: log(A(x)) = 2*x - 4*x^2/2 + 2*x^3/3 + 8*x^4/4 + 2*x^5/5 - 4*x^6/6 + 2*x^7/7 - 16*x^8/8 + 2*x^9/9 - 4*x^10/10 + 2*x^11/11 + 8*x^12/12 + 2*x^13/13 - 4*x^14/14 + 2*x^15/15 + 32*x^16/16 +... The g.f. may be expressed by the series: A(x) = 1 + 2*G(x) + 2*G(x^4) + 2*G(x^16) + 2*G(x^64) + 2*G(x^256) +... where G(x) is the g.f. of A183035: G(x) = x*(1-x^2)*Product_{n>=1} (1 + x^(4^n))^3 which begins: G(x) = x - x^3 + 3*x^5 - 3*x^7 + 3*x^9 - 3*x^11 + x^13 - x^15 + 3*x^17 - 3*x^19 + 9*x^21 - 9*x^23 + 9*x^25 - 9*x^27 + 3*x^29 - 3*x^31 +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, -(-2)^valuation(2*m, 2)*x^m/m)+x*O(x^n)), n)} (PARI) {a(n)=local(L4n=ceil(log(n+1)/log(4)), G=x*(1-x^2)*prod(k=1, L4n, 1 + x^(4^k))^3); polcoeff(1+2*sum(k=0, L4n, subst(G, x, x^(4^k)+x*O(x^n))), n)} CROSSREFS Cf. A183035, A001511, A000123. Sequence in context: A301999 A171936 A071055 * A354101 A078052 A056458 Adjacent sequences: A183031 A183032 A183033 * A183035 A183036 A183037 KEYWORD sign AUTHOR Paul D. Hanna, Dec 19 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:20 EST 2023. Contains 367600 sequences. (Running on oeis4.)