login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)/(1+x+2*x^2+2*x^3).
1

%I #23 Sep 08 2022 08:45:08

%S 1,-2,0,2,2,-6,-2,10,6,-22,-10,42,22,-86,-42,170,86,-342,-170,682,342,

%T -1366,-682,2730,1366,-5462,-2730,10922,5462,-21846,-10922,43690,

%U 21846,-87382,-43690,174762,87382,-349526,-174762,699050,349526,-1398102,-699050,2796202,1398102,-5592406,-2796202

%N Expansion of (1-x)/(1+x+2*x^2+2*x^3).

%C First differences of A077980.

%H Vincenzo Librandi, <a href="/A078052/b078052.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,-2)

%F a(n) = (1/3) * ((-3+5*(-1)^n)/2 * (-2)^floor(n/2) + 2*(-1)^n ). - _Ralf Stephan_, Aug 17 2013

%F a(0)=1, a(1)=-2, a(2)=0, a(n)=-a(n-1)-2*a(n-2)-2*a(n-3). - _Harvey P. Dale_, Mar 26 2015

%t CoefficientList[Series[(1 - x) / (1 + x + 2 x^2 + 2 x^3), {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 17 2013 *)

%t LinearRecurrence[{-1,-2,-2},{1,-2,0},50] (* _Harvey P. Dale_, Mar 26 2015 *)

%o (PARI) a(n)=1/3*((-3+5*(-1)^n)/2*(-2)^floor(n/2)+2*(-1)^n); \\ _Ralf Stephan_, Aug 17 2013

%o (Magma) I:=[1,-2,0]; [n le 3 select I[n] else -Self(n-1)-2*Self(n-2) -2*Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Aug 17 2013

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 17 2002