login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077410
Combined Diophantine Chebyshev sequences A077249 and A077251.
2
1, 2, 12, 21, 119, 208, 1178, 2059, 11661, 20382, 115432, 201761, 1142659, 1997228, 11311158, 19770519, 111968921, 195707962, 1108378052, 1937309101, 10971811599, 19177383048, 108609737938
OFFSET
0,2
COMMENTS
-24*a(n)^2 + b(n)^2 = 25, with the companion sequence b(n)= A077411(n).
FORMULA
a(2*k) = A077251(k) and a(2*k+1) = A077249(k), k>=0.
a(n) = sqrt((A077411(n)^2 - 25)/24).
G.f.: (1+x)*(1+x+x^2)/(1-10*x^2+x^4).
EXAMPLE
24*a(2)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077411(2)^2.
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x+x^2)/(1-10*x^2+x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 10, 0, -1}, {1, 2, 12, 21}, 30] (* G. C. Greubel, Jan 18 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x)*(1+x+x^2)/(1-10*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018
(Magma) I:=[1, 2, 12, 21]; [n le 4 select I[n] else 10*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 18 2018
CROSSREFS
Sequence in context: A213969 A199986 A336528 * A211029 A225188 A193828
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved