login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193828
Even generalized pentagonal numbers.
3
0, 2, 12, 22, 26, 40, 70, 92, 100, 126, 176, 210, 222, 260, 330, 376, 392, 442, 532, 590, 610, 672, 782, 852, 876, 950, 1080, 1162, 1190, 1276, 1426, 1520, 1552, 1650, 1820, 1926, 1962, 2072, 2262, 2380, 2420, 2542, 2752, 2882, 2926, 3060, 3290, 3432, 3480
OFFSET
0,2
COMMENTS
Even numbers in A001318.
LINKS
Mircea Merca, The bisectional pentagonal number theorem, Journal of Number Theory, Volume 157 (December 2015), Pages 223-232.
FORMULA
a(n) = A000217(A108752(n+1))/3 = 2*A154293(n+1).
G.f.: -2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2). - Colin Barker, Sep 12 2012
Sum_{n>=1} 1/a(n) = 6 - (1+4/sqrt(3))*Pi/2. - Amiram Eldar, Mar 18 2022
MATHEMATICA
CoefficientList[Series[-2*x*(x^2 - x + 1)*(x^2 + 4*x + 1)/((x - 1)^3*(x^2 + 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 06 2017 *)
LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {0, 2, 12, 22, 26, 40, 70}, 50] (* Harvey P. Dale, Apr 09 2019 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(-2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2))) \\ G. C. Greubel, Jun 06 2017
CROSSREFS
Sequence in context: A077410 A211029 A225188 * A191226 A063599 A163479
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 19 2011
STATUS
approved