OFFSET
0,1
COMMENTS
Klemm and Pandharipande's Table 2 contains the sequence that agrees with the initial terms given here, a(1)-a(5). It continues 63022367592536650014764880, 1642558496795158117310144372160, 45038918271966862868230872208340160. - Andrey Zabolotskiy, Sep 11 2022
LINKS
Geir Ellingsrud and Stein Arild Stromme, Bott's formula and enumerative geometry. J. Amer. Math. Soc. 9 (1996), 175-193. [arXiv:alg-geom/9411005]
A. Klemm and R. Pandharipande, Enumerative geometry of Calabi-Yau 4-folds, Commun. Math. Phys., 281 (2008), 621-653; arXiv:math/0702189 [math.AG], 2007.
David R. Morrison, Mathematical Aspects of Mirror Symmetry, in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265-340.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 28 2002
STATUS
approved