OFFSET
1,1
LINKS
M. Fulmek and C. Krattenthaler, The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II, arXiv:math/9909038 [math.CO], 1999.
FORMULA
a(n) ~ exp(1/12) * 3^(18*n^2 - 13/12) / (A * n^(1/12) * 2^(24*n^2 - 1/6)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023
MATHEMATICA
a[n_] := (1/3 - 1/12 Binomial[2n, n]^3/Binomial[6n, 3n]) Product[(i + j + k - 1)/(i + j + k - 2), {i, 1, 2n}, {j, 1, 2n}, {k, 1, 2n}];
Array[a, 6] (* Jean-François Alcover, Nov 18 2018 *)
PROG
(PARI) a(n)=(1/3-1/12*binomial(2*n, n)^3/binomial(6*n, 3*n))*prod(i=1, 2*n, prod(j=1, 2*n, prod(k=1, 2*n, (i+j+k-1)/(i+j+k-2))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Oct 01 2004
STATUS
approved