login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rhombus tilings of a hexagon with all sides of length 2n which contain the rhombus above and next to the center of the hexagon.
5

%I #11 Aug 29 2023 11:14:36

%S 6,73080,472598638512,1631619756904447290240,

%T 3008692066440440678503082183460000,

%U 2962701176869736970134706082584757742017500000000,1557551298812773746701490125169378658941648550102913633903040000000

%N Number of rhombus tilings of a hexagon with all sides of length 2n which contain the rhombus above and next to the center of the hexagon.

%H M. Fulmek and C. Krattenthaler, <a href="https://arxiv.org/abs/math/9909038">The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II</a>, arXiv:math/9909038 [math.CO], 1999.

%F a(n) ~ exp(1/12) * 3^(18*n^2 - 13/12) / (A * n^(1/12) * 2^(24*n^2 - 1/6)), where A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 29 2023

%t a[n_] := (1/3 - 1/12 Binomial[2n, n]^3/Binomial[6n, 3n]) Product[(i + j + k - 1)/(i + j + k - 2), {i, 1, 2n}, {j, 1, 2n}, {k, 1, 2n}];

%t Array[a, 6] (* _Jean-François Alcover_, Nov 18 2018 *)

%o (PARI) a(n)=(1/3-1/12*binomial(2*n,n)^3/binomial(6*n,3*n))*prod(i=1,2*n,prod(j=1,2*n,prod(k=1,2*n,(i+j+k-1)/(i+j+k-2))))

%Y Cf. A099113, A099114, A099115, A099116, A099117, A008793.

%K nonn

%O 1,1

%A _Ralf Stephan_, Oct 01 2004