login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076387
Numbers n such that sum of digits in base 9 is a divisor of sum of prime divisors (A008472).
8
2, 3, 5, 7, 9, 21, 27, 65, 69, 70, 81, 84, 90, 110, 123, 126, 130, 133, 154, 189, 222, 228, 243, 252, 259, 264, 327, 329, 333, 340, 342, 343, 350, 365, 372, 381, 402, 434, 450, 516, 528, 580, 588, 618, 621, 650, 684, 729, 730, 731, 738, 740, 741, 756, 765, 774
OFFSET
1,1
COMMENTS
The sequence is infinite because, for m = 9^k, k >= 0, digsum(m_9) = 1. - Marius A. Burtea, Jul 10 2019
LINKS
EXAMPLE
21 = 23_9, digsum(23_9) = 5, PrimeDivisors(21) = {3, 7}, sopf(21) = 3+7 = 10 = 5*2.
MAPLE
A076387 := proc(n) local i, j, t, t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 9); t1 := floor(t1/9); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t, i; fi; od; t; end;
PROG
(PARI) {for(ixp=2, 783,
casi=ixp; cvst=0; dsu=0; M=factor(ixp); smt=0;
for(i=1, matsize(M)[1], smt=smt+M[i, 1]);
while(casi!=0,
cvd=casi%9; dsu=dsu+cvd; casi=(casi-cvd)/9);
if(smt%dsu==0, print1(ixp, ", ")))} \\ Douglas Latimer, May 08 2012
(Magma) [n: n in [1..800]| &+PrimeDivisors(n) mod &+Intseq(n, 9) eq 0] ; // Marius A. Burtea, Jul 10 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Floor van Lamoen, Oct 08 2002
STATUS
approved