login
A076385
Numbers n such that sum of digits in base 7 is a divisor of sum of prime divisors (A008472).
1
2, 3, 5, 7, 8, 9, 42, 49, 78, 84, 105, 114, 115, 126, 130, 154, 156, 161, 168, 170, 186, 228, 235, 252, 258, 294, 305, 336, 343, 350, 357, 366, 371, 372, 378, 402, 410, 425, 429, 430, 434, 442, 444, 455, 456, 460, 474, 504, 516, 520, 555, 558, 574, 588, 616
OFFSET
1,1
MAPLE
A076385 := proc(n) local i, j, t, t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 7); t1 := floor(t1/7); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t, i; fi; od; t; end;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Floor van Lamoen, Oct 08 2002
STATUS
approved