login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075676
Sequences A001644 and A000073 interleaved.
1
3, 1, 3, 2, 11, 7, 39, 24, 131, 81, 443, 274, 1499, 927, 5071, 3136, 17155, 10609, 58035, 35890, 196331, 121415, 664183, 410744, 2246915, 1389537, 7601259, 4700770, 25714875, 15902591, 86992799, 53798080, 294294531, 181997601
OFFSET
0,1
FORMULA
a(n) = A000073(n) if n odd, a(n) = A001644(n) if n even.
a(n) = ((1-(-1)^n)*T(n) + (1+(-1)^n)*S(n))/2, where T(n) = A000073(n), S(n) = A001644(n).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=3, a(1)=1, a(2)=3, a(3)=2, a(4)=11, a(5)=7.
O.g.f.: (3 + x - 6*x^2 - x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
a(n) = T(n) + (1+(-1)^n)*(T(n-1) + (3/2)*T(n-2)).
MATHEMATICA
CoefficientList[Series[(3+x-6x^2-x^3-x^4)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
LinearRecurrence[{0, 3, 0, 1, 0, 1}, {3, 1, 3, 2, 11, 7}, 40] (* Harvey P. Dale, May 01 2014 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)) \\ G. C. Greubel, Apr 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x- 6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
(Sage) ((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 24 2002
STATUS
approved