OFFSET
0,2
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274
FORMULA
T(n,0) = 1/n*Sum_{d|n} mu(d)*3^(n/d) = A027376(n).
T(n,n-1) = 3 for k>0.
T(n,k) = 1/k*Sum_{d|k,d|n} mu(d) C(n/d-1,(n-k)/d )*3^((n-k)/d) = 1/(n-k)*Sum_{d|k,d|n} mu(d) C(n/d-1,k/d)*3^((n-k)/d).
O.g.f. of columns: Sum_n T(n,k) x^n = x^k/k*Sum_{d|k} mu(d)*1/(1-3*x^d)^(k/d).
O.g.f. of diagonals: Sum_n T(n,n-k) x^n = x^k/k*Sum_{d|k} mu(d)*(3/(1-x^d))^(k/d).
EXAMPLE
T(4,2) = 12 because the words 11ab, 11ba, 1a1b for ab=23, 24, 34 and 11aa for a=2,3,4 are all Lyndon and of length 4 with exactly two 1s.
From Andrew Howroyd, Mar 26 2017: (Start)
Triangle starts
* 1
* 3 1
* 3 3 0
* 8 9 3 0
* 18 27 12 3 0
* 48 81 54 18 3 0
* 116 243 198 89 21 3 0
* 312 729 729 405 135 27 3 0
* 810 2187 2538 1701 702 189 30 3 0
(End)
MAPLE
C:=combinat[numbcomb]:mu:=numtheory[mobius]:divs:=numtheory[divisors]: T:=proc(n, k) local d; if k>0 then add(mu(d)*C(n/d-1, (n-k)/d)*3^((n-k)/d), d=divs(n) intersect divs(k))/k; elif n>0 then 1/n*add(mu(d)*3^(n/d), d=divs(n)); else 1; fi; end; [seq([seq(T(n, k), k=0..n)], n=0..10)];
MATHEMATICA
nmax = 10; col[0] = Table[If[n == 0, 1, 1/n* DivisorSum[n, MoebiusMu[#]* 3^(n/#)&]], {n, 0, nmax}]; col[k_] := x^k/k * DivisorSum[k, MoebiusMu[#] / (1 - 3*x^#)^(k/#)&] + O[x]^(nmax+2) // CoefficientList[#, x]&; Table[ col[k][[n+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mike Zabrocki, Nov 08 2006
STATUS
approved