login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of number of 4-ary Lyndon words of length n containing exactly k 1s.
6

%I #14 Sep 19 2017 10:23:50

%S 1,3,1,3,3,0,8,9,3,0,18,27,12,3,0,48,81,54,18,3,0,116,243,198,89,21,3,

%T 0,312,729,729,405,135,27,3,0,810,2187,2538,1701,702,189,30,3,0,2184,

%U 6561,8748,6801,3402,1134,251,36,3,0,5880,19683,29484,26244,15282,6123,1692

%N Triangle of number of 4-ary Lyndon words of length n containing exactly k 1s.

%C Row sums given by A027377, first column given by A027376, second column given by A000244, third through sixth columns (k=2,3,4,5) given by A124810, A124811, A124812, A124813, third diagonal given by 3*A032766.

%H Andrew Howroyd, <a href="/A124814/b124814.txt">Table of n, a(n) for n = 0..1274</a>

%F T(n,0) = 1/n*Sum_{d|n} mu(d)*3^(n/d) = A027376(n).

%F T(n,n-1) = 3 for k>0.

%F T(n,k) = 1/k*Sum_{d|k,d|n} mu(d) C(n/d-1,(n-k)/d )*3^((n-k)/d) = 1/(n-k)*Sum_{d|k,d|n} mu(d) C(n/d-1,k/d)*3^((n-k)/d).

%F O.g.f. of columns: Sum_n T(n,k) x^n = x^k/k*Sum_{d|k} mu(d)*1/(1-3*x^d)^(k/d).

%F O.g.f. of diagonals: Sum_n T(n,n-k) x^n = x^k/k*Sum_{d|k} mu(d)*(3/(1-x^d))^(k/d).

%e T(4,2) = 12 because the words 11ab, 11ba, 1a1b for ab=23, 24, 34 and 11aa for a=2,3,4 are all Lyndon and of length 4 with exactly two 1s.

%e From _Andrew Howroyd_, Mar 26 2017: (Start)

%e Triangle starts

%e * 1

%e * 3 1

%e * 3 3 0

%e * 8 9 3 0

%e * 18 27 12 3 0

%e * 48 81 54 18 3 0

%e * 116 243 198 89 21 3 0

%e * 312 729 729 405 135 27 3 0

%e * 810 2187 2538 1701 702 189 30 3 0

%e (End)

%p C:=combinat[numbcomb]:mu:=numtheory[mobius]:divs:=numtheory[divisors]: T:=proc(n,k) local d; if k>0 then add(mu(d)*C(n/d-1,(n-k)/d)*3^((n-k)/d),d=divs(n) intersect divs(k))/k; elif n>0 then 1/n*add(mu(d)*3^(n/d),d=divs(n)); else 1; fi; end; [seq([seq(T(n,k),k=0..n)],n=0..10)];

%t nmax = 10; col[0] = Table[If[n == 0, 1, 1/n* DivisorSum[n, MoebiusMu[#]* 3^(n/#)&]], {n, 0, nmax}]; col[k_] := x^k/k * DivisorSum[k, MoebiusMu[#] / (1 - 3*x^#)^(k/#)&] + O[x]^(nmax+2) // CoefficientList[#, x]&; Table[ col[k][[n+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 19 2017 *)

%Y Cf. A051168, A123223, A027377, A124810, A124811, A124812, A124813.

%K nonn,tabl

%O 0,2

%A _Mike Zabrocki_, Nov 08 2006