Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:07
%S 3,1,3,2,11,7,39,24,131,81,443,274,1499,927,5071,3136,17155,10609,
%T 58035,35890,196331,121415,664183,410744,2246915,1389537,7601259,
%U 4700770,25714875,15902591,86992799,53798080,294294531,181997601
%N Sequences A001644 and A000073 interleaved.
%H G. C. Greubel, <a href="/A075676/b075676.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0, 3, 0, 1, 0, 1).
%F a(n) = A000073(n) if n odd, a(n) = A001644(n) if n even.
%F a(n) = ((1-(-1)^n)*T(n) + (1+(-1)^n)*S(n))/2, where T(n) = A000073(n), S(n) = A001644(n).
%F a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=3, a(1)=1, a(2)=3, a(3)=2, a(4)=11, a(5)=7.
%F O.g.f.: (3 + x - 6*x^2 - x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
%F a(n) = T(n) + (1+(-1)^n)*(T(n-1) + (3/2)*T(n-2)).
%t CoefficientList[Series[(3+x-6x^2-x^3-x^4)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
%t LinearRecurrence[{0,3,0,1,0,1},{3,1,3,2,11,7},40] (* _Harvey P. Dale_, May 01 2014 *)
%o (PARI) my(x='x+O('x^40)); Vec((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)) \\ _G. C. Greubel_, Apr 21 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x- 6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6) )); // _G. C. Greubel_, Apr 21 2019
%o (Sage) ((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 21 2019
%Y Cf. A000073, A001644, A005013, A005247, A075536.
%K easy,nonn
%O 0,1
%A Mario Catalani (mario.catalani(AT)unito.it), Sep 24 2002