login
A075670
Sum of next n 9th powers.
2
1, 20195, 12292965, 1561991824, 77226633575, 2014634387961, 33098483802475, 383318212734080, 3377498614484589, 23898971839102975, 141290020118952881, 719054471032657200, 3223613105991831475, 12964037775857022869, 47453810583528962775, 159982264435790734336
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
FORMULA
a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^9.
a(n) = (5n^19 + 105n^17 + 666n^15 + 1530n^13 + 689n^11 - 995n^9 + 304n^7 + 640n^5 - 384n^3)/2560. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^18 +20175*x^17 +11889255*x^16 +1319968434*x^15 +48299442990*x^14 +752964012192*x^13 +5757432094050*x^12 +23468751060270*x^11 +53583908362248*x^10 +70362713036770*x^9 +53583908362248*x^8 +23468751060270*x^7 +5757432094050*x^6+752964012192*x^5 +48299442990*x^4 +1319968434*x^3 +11889255*x^2 +20175*x +1)/(x -1)^20. - Colin Barker, Sep 06 2012
EXAMPLE
a(1) = 1^9 = 1; a(2) = 2^9 + 3^9 = 20195; a(3) = 4^9 + 5^9 + 6^9 = 12292965; a(4) = 7^9 + 8^9 + 9^9 + 10^9 = 1561991824.
MATHEMATICA
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=9; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Total[#^9]&/@(Range[First[#]+1, Last[#]]&/@Partition[Accumulate[Range[ 0, 15]], 2, 1]) (* Harvey P. Dale, Oct 05 2011 *)
PROG
(Magma) [(5*n^19 + 105*n^17 + 666*n^15 + 1530*n^13 + 689*n^11 - 995*n^9 + 304*n^7 + 640*n^5 - 384*n^3)/2560 : n in [1..20]]; // Vincenzo Librandi, Oct 06 2011
CROSSREFS
Cf. A001017 (9th powers).
Cf. A006003, A072474 (for squares), A075664 - A075671 (3rd to 10th powers), A069876 (n-th powers).
Sequence in context: A031682 A052358 A052189 * A053073 A295014 A133527
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Sep 24 2002
STATUS
approved