OFFSET
0,1
LINKS
G. C. Greubel, Antidiagonals n = 0..100, flattened
FORMULA
T(n, k) = 2^(1-k)*Sum_{j=0..floor(k/2)} binomial(k, 2*j)*(1+4*n)^j. - G. C. Greubel, Jan 27 2020
EXAMPLE
Array starts as:
2, 1, 1, 1, 1, 1, ...;
2, 1, 3, 4, 7, 11, ...;
2, 1, 5, 7, 17, 31, ...;
2, 1, 7, 10, 31, 61, ...;
2, 1, 9, 13, 49, 101, ...;
2, 1, 11, 16, 71, 151, ...; etc.
MAPLE
seq(seq( 2^(1+k-n)*add( binomial(n-k, 2*j)*(1+4*k)^j, j=0..floor((n-k)/2)), k=0..n), n=0..13); # G. C. Greubel, Jan 27 2020
MATHEMATICA
T[n_, k_]:= ((1 + Sqrt[1+4n])/2)^k + ((1 - Sqrt[1+4n])/2)^k; Table[If[n==0 && k==0, 2, T[k, n-k]]//Simplify, {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 27 2020 *)
PROG
(Magma) [2^(1+k-n)*(&+[Binomial(n-k, 2*j)*(1+4*k)^j: j in [0..Floor((n-k)/2)]]): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 27 2020
(Sage)
def T(n, k): return 2^(1-k)*sum( binomial(k, 2*j)*(1+4*n)^j for j in (0..floor(k/2)) )
[[T(k, n-k) for k in (0..n)] for n in (0..13)] # G. C. Greubel, Jan 27 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Sep 02 2002
STATUS
approved