login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225743
Triangular array: row n is least squarefree word of length n using positive integers.
1
1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4
OFFSET
1,3
COMMENTS
Squarefree means that the word contains no consecutive identical subwords.
LINKS
EXAMPLE
The first 10 rows are shown here:
1
1 2
1 2 1
1 2 1 3
1 2 1 3 1
1 2 1 3 1 2
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4
1 2 1 3 1 2 1 4 1
1 2 1 3 1 2 1 4 1 2
1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not.
MATHEMATICA
squareFreeQ[string_] := StringFreeQ[string, a__ ~~ a__]; t = {}; s = Table[AppendTo[t, NestWhile[# + 1 &, 1, ! squareFreeQ[ToString[FromDigits[Append[t, #]]]] &]], {20}];
TableForm[s] (* A225743 array *)
Flatten[s] (* A225743 sequence *)
Map[IntegerExponent[2*#, 2] &, Range[Range[33]]] (* A225743 array, by formula *)
(* Peter J. C. Moses, Sep 03 2013 *)
CROSSREFS
Cf. A001511 (the limiting sequence)
Sequence in context: A087740 A029439 A374030 * A218828 A075117 A279387
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Sep 03 2013
STATUS
approved