login
A225743
Triangular array: row n is least squarefree word of length n using positive integers.
1
1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4
OFFSET
1,3
COMMENTS
Squarefree means that the word contains no consecutive identical subwords.
LINKS
EXAMPLE
The first 10 rows are shown here:
1
1 2
1 2 1
1 2 1 3
1 2 1 3 1
1 2 1 3 1 2
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4
1 2 1 3 1 2 1 4 1
1 2 1 3 1 2 1 4 1 2
1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not.
MATHEMATICA
squareFreeQ[string_] := StringFreeQ[string, a__ ~~ a__]; t = {}; s = Table[AppendTo[t, NestWhile[# + 1 &, 1, ! squareFreeQ[ToString[FromDigits[Append[t, #]]]] &]], {20}];
TableForm[s] (* A225743 array *)
Flatten[s] (* A225743 sequence *)
Map[IntegerExponent[2*#, 2] &, Range[Range[33]]] (* A225743 array, by formula *)
(* Peter J. C. Moses, Sep 03 2013 *)
CROSSREFS
Cf. A001511 (the limiting sequence)
Sequence in context: A087740 A029439 A374030 * A218828 A075117 A279387
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Sep 03 2013
STATUS
approved