The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074733 a(n+4) = floor( ( a(n) + 2*a(n+1) + 3*a(n+2) + 4*a(n+3) )/5 ), with a(0), a(1), a(2), a(3) equal to 0, 1, 2, 3. 2
 0, 1, 2, 3, 4, 6, 8, 12, 17, 25, 36, 53, 77, 112, 164, 239, 349, 510, 745, 1089, 1592, 2327, 3401, 4971, 7266, 10621, 15525, 22693, 33171, 48486, 70873, 103597, 151430, 221348, 323549, 472939, 691305, 1010496, 1477065, 2159059, 3155945, 4613116, 6743096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ratio of each term to the preceding approaches 1.46172263..., a root of -5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 EXAMPLE a(7) = 12 because (3 + 2*4 + 3*5 + 4*8)/5 = 12.2 and 12.2 floored = 12. MATHEMATICA Nest[Append[#, Floor@ Total[Range[4] * #[[-4 ;; -1]]/5 ]] &, Range[0, 3], 39] (* Michael De Vlieger, Feb 12 2020 *) PROG (PARI) seq(n)={my(a=vector(n+1)); a[1]=0; a[2]=1; a[3]=2; a[4]=3; for(n=1, #a-4, a[n+4] = (a[n] + 2*a[n+1] + 3*a[n+2] + 4*a[n+3])\5); a} \\ Andrew Howroyd, Feb 12 2020 CROSSREFS Cf. A074732. Sequence in context: A342338 A221942 A107368 * A001461 A048597 A332839 Adjacent sequences: A074730 A074731 A074732 * A074734 A074735 A074736 KEYWORD easy,nonn AUTHOR Axel Harvey, Sep 05 2002 EXTENSIONS Terms a(31) and beyond from Andrew Howroyd, Feb 12 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:08 EST 2023. Contains 367565 sequences. (Running on oeis4.)