login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+4) = floor( ( a(n) + 2*a(n+1) + 3*a(n+2) + 4*a(n+3) )/5 ), with a(0), a(1), a(2), a(3) equal to 0, 1, 2, 3.
2

%I #11 Feb 12 2020 18:01:30

%S 0,1,2,3,4,6,8,12,17,25,36,53,77,112,164,239,349,510,745,1089,1592,

%T 2327,3401,4971,7266,10621,15525,22693,33171,48486,70873,103597,

%U 151430,221348,323549,472939,691305,1010496,1477065,2159059,3155945,4613116,6743096

%N a(n+4) = floor( ( a(n) + 2*a(n+1) + 3*a(n+2) + 4*a(n+3) )/5 ), with a(0), a(1), a(2), a(3) equal to 0, 1, 2, 3.

%C Ratio of each term to the preceding approaches 1.46172263..., a root of -5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1.

%H Andrew Howroyd, <a href="/A074733/b074733.txt">Table of n, a(n) for n = 0..1000</a>

%e a(7) = 12 because (3 + 2*4 + 3*5 + 4*8)/5 = 12.2 and 12.2 floored = 12.

%t Nest[Append[#, Floor@ Total[Range[4] * #[[-4 ;; -1]]/5 ]] &, Range[0, 3], 39] (* _Michael De Vlieger_, Feb 12 2020 *)

%o (PARI) seq(n)={my(a=vector(n+1)); a[1]=0; a[2]=1; a[3]=2; a[4]=3; for(n=1, #a-4, a[n+4] = (a[n] + 2*a[n+1] + 3*a[n+2] + 4*a[n+3])\5); a} \\ _Andrew Howroyd_, Feb 12 2020

%Y Cf. A074732.

%K easy,nonn

%O 0,3

%A _Axel Harvey_, Sep 05 2002

%E Terms a(31) and beyond from _Andrew Howroyd_, Feb 12 2020