The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074735 Number of steps to reach an integer starting with (n+3)/4 and iterating the map x -> x*ceiling(x). 1
 0, 3, 1, 2, 0, 3, 2, 8, 0, 1, 1, 1, 0, 3, 3, 2, 0, 2, 1, 3, 0, 2, 2, 2, 0, 1, 1, 1, 0, 7, 4, 4, 0, 4, 1, 2, 0, 4, 2, 3, 0, 1, 1, 1, 0, 2, 3, 4, 0, 2, 1, 8, 0, 4, 2, 3, 0, 1, 1, 1, 0, 6, 5, 4, 0, 3, 1, 2, 0, 5, 2, 4, 0, 1, 1, 1, 0, 5, 3, 2, 0, 2, 1, 3, 0, 2, 2, 2, 0, 1, 1, 1, 0, 4, 4, 5, 0, 6, 1, 2, 0, 3, 2, 5, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let S(n)=sum(k=1,n,a(k)) then it seems that S(n) is asymptotic to 2n. S(n)=2n for many values of n, namely n=10,128,198,199,237,238,241,242,246,247,249,267,329... More generally, starting with (n+2^m-1)/2^m and iterating the same map seems to produce the same kind of behavior for a(n) (i.e. sum(k=1,n,a(k)) is asymptotic to c(m)*n where c(m) depends on m and c(m) is a power of 2). LINKS Table of n, a(n) for n=0..104. FORMULA Special cases: for k>= 0 a(4k+1) = 0, a(16k+10) = a(16k+11) = a(16k+12) = 1. MATHEMATICA Table[Length[NestWhileList[# Ceiling[#]&, (n+3)/4, !IntegerQ[#]&]]-1, {n, 110}] (* Harvey P. Dale, Apr 11 2020 *) PROG (PARI) a(n)=if(n<0, 0, s=(n+3)/4; c=0; while(frac(s)>0, s=s*ceil(s); c++); c) CROSSREFS Cf. A073524, A073341, A068119. Sequence in context: A327852 A190561 A359793 * A074090 A054025 A265910 Adjacent sequences: A074732 A074733 A074734 * A074736 A074737 A074738 KEYWORD nonn AUTHOR Benoit Cloitre, Sep 05 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 12:53 EDT 2024. Contains 371780 sequences. (Running on oeis4.)