

A074736


Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity.


2



4, 8, 36, 32, 108, 128, 900, 216, 972, 2048, 4500, 8192, 8748, 1944, 44100, 131072, 13500, 524288, 112500, 17496, 708588, 8388608, 308700, 7776, 6377292, 27000, 2812500, 536870912, 337500, 2147483648, 5336100, 1417176, 516560652, 69984
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


REFERENCES

Goedel, K. "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", Dover Publications, 1992.


LINKS

Table of n, a(n) for n=2..35.


FORMULA

a(n) = prime(1)^p_1 * prime(2)^p_2 * ... * prime(k)^p_k, where p_1 <= ... <= p_k are the prime factors of n, repeated according to multiplicity.


EXAMPLE

The prime factors of 12 in increasing order and repeated according to multiplicity are 2, 2, 3. Hence a(12) = 2^2 * 3^2 * 5^3 = 4500.


PROG

(PARI) for(n=2, 50, m=factor(n):s=1:c=1:for(k=1, matsize(m)[1], for(l=1, m[k, 2], s=s*prime(c)^m[k, 1]:c=c+1)):print1(s", "))


CROSSREFS

Sequence in context: A266676 A046056 A158863 * A044829 A033001 A269012
Adjacent sequences: A074733 A074734 A074735 * A074737 A074738 A074739


KEYWORD

nonn


AUTHOR

Joseph L. Pe, Sep 28 2002


EXTENSIONS

More terms from Ralf Stephan, Mar 22 2003


STATUS

approved



