|
|
A074699
|
|
a(n) = tau(Fibonacci(24*2^n))/(24*2^n) where tau(x) is the number of divisors of x (A000005(x)).
|
|
0
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Are terms always integers?
|
|
LINKS
|
Table of n, a(n) for n=0..7.
|
|
MAPLE
|
with(numtheory): with(combinat): a:=n->tau(fibonacci(24*2^n))/(24*2^n): seq(a(n), n=0..4); # Emeric Deutsch, Jan 30 2006
|
|
MATHEMATICA
|
Table[DivisorSigma[0, Fibonacci[24 2^n]] / (24 2^n), {n, 0, 5}] (* Vincenzo Librandi, Sep 11 2017 *)
|
|
PROG
|
(PARI) a(n) = numdiv(fibonacci(24*2^n))/(24*2^n); \\ Michel Marcus, Sep 10 2017
(Magma) [NumberOfDivisors(Fibonacci(24*2^n))/(24*2^n): n in [0..5]]; // Vincenzo Librandi, Sep 11 2017
|
|
CROSSREFS
|
Cf. A063375, A074698.
Sequence in context: A163081 A332386 A096239 * A115088 A089622 A241147
Adjacent sequences: A074696 A074697 A074698 * A074700 A074701 A074702
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Benoit Cloitre, Sep 03 2002
|
|
EXTENSIONS
|
a(5) from Eric Rowland, Jun 18 2017
a(6)-a(7) from Amiram Eldar, Sep 03 2019 (using FactorDB)
|
|
STATUS
|
approved
|
|
|
|