login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096239
Number of n-digit base-6 deletable primes.
0
3, 7, 32, 135, 597, 2787, 13374, 66071, 335895, 1743974, 9216391, 49420750, 268312356
OFFSET
1,1
COMMENTS
A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
MATHEMATICA
b = 6; a = {3}; d = {2, 3, 5};
For[n = 2, n <= 5, n++,
p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
ct = 0;
For[i = 1, i <= Length[p], i++,
c = IntegerDigits[p[[i]], b];
For[j = 1, j <= n, j++,
t = Delete[c, j];
If[t[[1]] == 0, Continue[]];
If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++;
Break[]]]];
AppendTo[a, ct]];
a (* Robert Price, Nov 12 2018 *)
PROG
(Python)
from sympy import isprime
from sympy.ntheory.digits import digits
def ok(n, prevset, base=6):
if not isprime(n): return False
s = "".join(str(d) for d in digits(n, base)[1:])
si = (s[:i]+s[i+1:] for i in range(len(s)))
return any(t[0] != '0' and int(t, base) in prevset for t in si)
def afind(terms):
alst = [3]
s, snxt, base = {2, 3, 5}, set(), 6
print(len(s), end=", ")
for n in range(2, terms+1):
for i in range(base**(n-1), base**n):
if ok(i, s):
snxt.add(i)
s, snxt = snxt, set()
print(len(s), end=", ")
afind(8) # Michael S. Branicky, Jan 17 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Michael Kleber, Feb 28 2003
EXTENSIONS
a(6)-a(11) from Ryan Propper, Jul 19 2005
a(12)-a(13) from Michael S. Branicky, Jan 17 2022
STATUS
approved