login
A074701
Numbers k such that k = Sum_{d|phi(k)} mu(phi(d))*phi(k)/d.
2
1, 3, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125, 59604644775390625, 298023223876953125
OFFSET
1,2
COMMENTS
Does sequence consist of 1,3 and all powers of 5? Answer from _Lambert Klasen_, Oct 07 2005: Yes! See attached file.
MAPLE
with(numtheory): a:=proc(n) local div: div:=convert(divisors(phi(n)), list): if add(mobius(phi(div[j]))*phi(n)/div[j], j=1..nops(div))=n then n else fi end: seq(a(n), n=1..5000); # Emeric Deutsch, Mar 27 2005
PROG
(PARI) isok(n) = n == sumdiv(eulerphi(n), d, moebius(eulerphi(d))*eulerphi(n)/d); \\ Michel Marcus, Aug 15 2019
CROSSREFS
Cf. A000351. [R. J. Mathar, Sep 23 2008]
Sequence in context: A009002 A119882 A276968 * A318179 A327468 A140127
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 03 2002
EXTENSIONS
2 more terms from Emeric Deutsch, Mar 27 2005
STATUS
approved