login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = tau(Fibonacci(24*2^n))/(24*2^n) where tau(x) is the number of divisors of x (A000005(x)).
0

%I #27 Sep 08 2022 08:45:07

%S 3,7,32,144,5120,180224,3145728,3489660928

%N a(n) = tau(Fibonacci(24*2^n))/(24*2^n) where tau(x) is the number of divisors of x (A000005(x)).

%C Are terms always integers?

%p with(numtheory): with(combinat): a:=n->tau(fibonacci(24*2^n))/(24*2^n): seq(a(n),n=0..4); # _Emeric Deutsch_, Jan 30 2006

%t Table[DivisorSigma[0, Fibonacci[24 2^n]] / (24 2^n), {n, 0, 5}] (* _Vincenzo Librandi_, Sep 11 2017 *)

%o (PARI) a(n) = numdiv(fibonacci(24*2^n))/(24*2^n); \\ _Michel Marcus_, Sep 10 2017

%o (Magma) [NumberOfDivisors(Fibonacci(24*2^n))/(24*2^n): n in [0..5]]; // _Vincenzo Librandi_, Sep 11 2017

%Y Cf. A063375, A074698.

%K more,nonn

%O 0,1

%A _Benoit Cloitre_, Sep 03 2002

%E a(5) from _Eric Rowland_, Jun 18 2017

%E a(6)-a(7) from _Amiram Eldar_, Sep 03 2019 (using FactorDB)