login
A074356
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).
3
0, 0, 0, 0, 12, 42, 180, 561, 1833, 5373, 15798, 44367, 123561, 336243, 906054, 2408094, 6344832, 16561824, 42922602, 110472933, 282678423, 719404803, 1822117962, 4594816221, 11540742615, 28880919975, 72033463644, 179107709004
OFFSET
0,5
COMMENTS
Coefficient of q^0 is A006130.
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
FORMULA
Conjectures from Colin Barker, Nov 18 2017: (Start)
G.f.: 3*x^4*(2 - 3*x)*(2 + 4*x + 3*x^2) / (1 - x - 3*x^2)^3.
a(n) = 3*a(n-1) + 6*a(n-2) - 17*a(n-3) - 18*a(n-4) + 27*a(n-5) + 27*a(n-6) for n>7.
(End)
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^2 are 0,0,0,0,12,42.
MAPLE
nu := proc(n, b, lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1, b, lambda)+lambda*nu(n-2, b, lambda)*add(q^i, i=0..n-2) ; fi ; end: A074356 := proc(n) local b, lambda, thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n, b, lambda) ; RETURN( coeftayl(thisnu, q=0, 2) ) ; end: for n from 0 to 40 do printf("%d, ", A074356(n) ) ; od ; # R. J. Mathar, Mar 20 2007
MATHEMATICA
nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 2];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from Maple *)
CROSSREFS
Coefficient of q^0, q^1 and q^3 are in A006130, A074355 and A074357. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074354, A074358-A074363.
Sequence in context: A228391 A334277 A122973 * A172294 A238225 A088826
KEYWORD
nonn
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
EXTENSIONS
More terms from R. J. Mathar, Mar 20 2007
STATUS
approved