OFFSET
0,5
COMMENTS
Coefficient of q^0 is A002605.
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
Index entries for linear recurrences with constant coefficients, signature (6, -6, -16, 12, 24, 8).
FORMULA
Conjecture: O.g.f: 4*x^4*(-3+2*x+8*x^2+4*x^3)/(2*x^2+2*x-1)^3. - R. J. Mathar, Jul 22 2009
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^2 are 0,0,0,0,12,64.
MAPLE
nu := proc(n, b, lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1, b, lambda)+lambda*nu(n-2, b, lambda)*add(q^i, i=0..n-2) ; fi ; end: A074359 := proc(n) local b, lambda, thisnu ; b := 2 ; lambda := 2 ; thisnu := nu(n, b, lambda) ; RETURN( coeftayl(thisnu, q=0, 2) ) ; end: for n from 0 to 40 do printf("%d, ", A074359(n) ) ; od ; # R. J. Mathar, Mar 20 2007
MATHEMATICA
Join[{0, 0}, LinearRecurrence[{6, -6, -16, 12, 24, 8}, {0, 0, 12, 64, 280, 1088}, 24]] (* Jean-François Alcover, Sep 23 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
EXTENSIONS
More terms from R. J. Mathar, Mar 20 2007
STATUS
approved