OFFSET
0,6
COMMENTS
Coefficient of q^0 is A001045(n+1).
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
FORMULA
Conjectures from Colin Barker, Nov 18 2017: (Start)
G.f.: 2*x^5*(1 + 2*x)*(7 - 10*x - 13*x^2 + 12*x^3 + 12*x^4) / ((1 + x)^4*(1 - 2*x)^4).
a(n) = 4*a(n-1) + 2*a(n-2) - 20*a(n-3) - a(n-4) + 40*a(n-5) + 8*a(n-6) - 32*a(n-7) - 16*a(n-8) for n>10.
(End)
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^1 are 0,0,0,0,0,14.
CROSSREFS
KEYWORD
nonn
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
EXTENSIONS
More terms from Benoit Cloitre, Jan 16 2003
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved