login
A073913
Number of staircase polygons on the square lattice with perimeter 2n and one (possibly rotated) staircase polygonal hole.
1
1, 12, 94, 604, 3461, 18412, 93016, 452500, 2139230, 9890404, 44921002, 201099320, 889594210, 3896177956, 16920602244, 72954802376, 312595497011, 1332153819572, 5650155211024, 23864065957572, 100418115489408
OFFSET
8,2
COMMENTS
The old entry with this A-number was a duplicate of A070844.
LINKS
Iwan Jensen, Table of n, a(n) for n = 8..125 [Data from web page]
Iwan Jensen and Andrew Rechnitzer, The exact perimeter generating function for a model of punctured staircase polygons, J. Phys. A: Math. Theor. 41 (2008) 215002, Table 1.
FORMULA
G.f.: -(1/4)*(f1(x)-f2(x)+f3(x)-f4(x)) where f1(x) = (1-8*x+16*x^2-4*x^3)/(1-4*x), f2(x) = (1-6*x+6*x^2)/sqrt(1-4*x), f3(x) = (1/sqrt(2))*(sqrt(2+sqrt(3+4*x))*(3-8*x+2*x^2-sqrt(3+4*x)*(1-2*x)))/(1-4*x)^(3/4), f4(x) = (1/sqrt(2))*((3-8*x+2*x^2+sqrt(3+4*x)*(1-2*x)))/(1-4*x)^(1/4)/sqrt(2+sqrt(3+4*x)) [from Jensen and Rechnitzer, 2008]. - Sean A. Irvine, Dec 27 2024
CROSSREFS
Sequence in context: A044644 A173348 A294449 * A057410 A045894 A045829
KEYWORD
nonn
AUTHOR
Olivier Gérard, Feb 14 2009, based on data from the web site of Iwan Jensen.
EXTENSIONS
Offset corrected by Sean A. Irvine, Dec 27 2024
STATUS
approved