The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045894 4-fold convolution of A001700(n), n >= 0. 5
 1, 12, 94, 608, 3525, 19044, 97954, 486000, 2345930, 11081880, 51447036, 235454848, 1064832173, 4767347796, 21160397050, 93223960784, 408037319262, 1775744775592, 7688699122724, 33140226601920, 142262721338146 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..1500 José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1. Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2. FORMULA a(n) = (n+11)*4^(n+2) - (n+5)*binomial(2*(n+4), n+4)/2; G.f.: c(x)^4/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108; recursion: a(n)= (2*(2*n+10)/(n+4))*a(n-1) + (4/(n+4))*A045720(n), a(0)=1. MATHEMATICA Table[(n + 11)*4^(n + 2) - (n + 5) Binomial[2 (n + 4), n + 4]/2, {n, 0, 20}] (* Michael De Vlieger, Feb 18 2017 *) PROG (Python) import math def C(n, r): ....f=math.factorial ....return f(n)/f(r)/f(n-r) def A045894(n): ....return (n+11)*4**(n+2)-(n+5)*C(2*(n+4), (n+4))/2 # Indranil Ghosh, Feb 18 2017 CROSSREFS Cf. A001700, A000108, A045720. Sequence in context: A294449 A073913 A057410 * A045829 A220683 A009647 Adjacent sequences: A045891 A045892 A045893 * A045895 A045896 A045897 KEYWORD easy,nonn AUTHOR Wolfdieter Lang STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 11:31 EST 2024. Contains 370352 sequences. (Running on oeis4.)